Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Am J Epidemiol ; 192(6): 1016-1028, 2023 06 02.
Article in English | MEDLINE | ID: covidwho-2251135

ABSTRACT

Coronavirus disease 2019 (COVID-19) vaccines are highly efficacious at preventing symptomatic infection, severe disease, and death. Most of the evidence that COVID-19 vaccines also reduce transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is based on retrospective, observational studies. Specifically, an increasing number of studies are evaluating vaccine effectiveness against the secondary attack rate of SARS-CoV-2 using data available in existing health-care databases or contact-tracing databases. Since these types of databases were designed for clinical diagnosis or management of COVID-19, they are limited in their ability to provide accurate information on infection, infection timing, and transmission events. We highlight challenges with using existing databases to identify transmission units and confirm potential SARS-CoV-2 transmission events. We discuss the impact of common diagnostic testing strategies, including event-prompted and infrequent testing, and illustrate their potential biases in estimating vaccine effectiveness against the secondary attack rate of SARS-CoV-2. We articulate the need for prospective observational studies of vaccine effectiveness against the SARS-CoV-2 secondary attack rate, and we provide design and reporting considerations for studies using retrospective databases.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Incidence , Retrospective Studies
2.
BMC Infect Dis ; 22(1): 683, 2022 Aug 09.
Article in English | MEDLINE | ID: covidwho-2214536

ABSTRACT

BACKGROUND: Despite the development of safe and effective vaccines, effective treatments for COVID-19 disease are still urgently needed. Several antiviral drugs have shown to be effective in reducing progression of COVID-19 disease. METHODS: In the present work, we use an agent-based mathematical model to assess the potential population impact of the use of antiviral treatments in four countries with different demographic structure and current levels of vaccination coverage: Kenya, Mexico, United States (US) and Belgium. We analyzed antiviral effects on reducing hospitalization and death, and potential antiviral effects on reducing transmission. For each country, we varied daily treatment initiation rate (DTIR) and antiviral effect in reducing transmission (AVT). RESULTS: Irrespective of location and AVT, widespread antiviral treatment of symptomatic adult infections (20% DTIR) prevented the majority of COVID-19 deaths, and recruiting 6% of all adult symptomatic infections daily reduced mortality by over 20% in all countries. Furthermore, our model projected that targeting antiviral treatment to the oldest age group (65 years old and older, DTIR of 20%) can prevent over 30% of deaths. Our results suggest that early antiviral treatment (as soon as possible after inception of infection) is needed to mitigate transmission, preventing 50% more infections compared to late treatment (started 3 to 5 days after symptoms onset). Our results highlight the synergistic effect of vaccination and antiviral treatment: as the vaccination rate increases, antivirals have a larger relative impact on population transmission. Finally, our model projects that even in highly vaccinated populations, adding antiviral treatment can be extremely helpful to mitigate COVID-19 deaths. CONCLUSIONS: These results suggest that antiviral treatments can become a strategic tool that, in combination with vaccination, can significantly reduce COVID-19 hospitalizations and deaths and can help control SARS-CoV-2 transmission.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Adult , Aged , Antiviral Agents/therapeutic use , COVID-19/prevention & control , Hospitalization , Humans , Pandemics/prevention & control , SARS-CoV-2 , United States
3.
J Med Virol ; 94(12): 6091-6096, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2059508

ABSTRACT

Two randomized controlled trials demonstrated no clinical benefit of hydroxychloroquine (HCQ) for either postexposure prophylaxis or early treatment of SARS-CoV-2 infection. Using data from these studies, we calculated the time-weighted average change from baseline SARS-CoV-2 viral load and demonstrated that HCQ did not affect viral clearance.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , SARS-CoV-2 , COVID-19/prevention & control , Humans , Hydroxychloroquine/therapeutic use , Viral Load
4.
Cell Rep Med ; 3(7): 100679, 2022 07 19.
Article in English | MEDLINE | ID: covidwho-1895507

ABSTRACT

The Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exhibits reduced susceptibility to vaccine-induced neutralizing antibodies, requiring a boost to generate protective immunity. We assess the magnitude and short-term durability of neutralizing antibodies after homologous and heterologous boosting with mRNA and Ad26.COV2.S vaccines. All prime-boost combinations substantially increase the neutralization titers to Omicron, although the boosted titers decline rapidly within 2 months from the peak response compared with boosted titers against the prototypic D614G variant. Boosted Omicron neutralization titers are substantially higher for homologous mRNA vaccine boosting, and for heterologous mRNA and Ad26.COV2.S vaccine boosting, compared with homologous Ad26.COV2.S boosting. Homologous mRNA vaccine boosting generates nearly equivalent neutralizing activity against Omicron sublineages BA.1, BA.2, and BA.3 but modestly reduced neutralizing activity against BA.2.12.1 and BA.4/BA.5 compared with BA.1. These results have implications for boosting requirements to protect against Omicron and future variants of SARS-CoV-2. This trial was conducted under ClincalTrials.gov: NCT04889209.


Subject(s)
COVID-19 , Viral Vaccines , Ad26COVS1 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Humans , RNA, Messenger , SARS-CoV-2/genetics , Vaccines, Synthetic , mRNA Vaccines
5.
Open Forum Infect Dis ; 9(5): ofac124, 2022 May.
Article in English | MEDLINE | ID: covidwho-1860893

ABSTRACT

Coronavirus disease 2019 (COVID-19) vaccines have yielded definitive prevention and major reductions in morbidity and mortality from severe acute respiratory syndrome coronavirus 2 infection, even in the context of emerging and persistent variants of concern. Newer variants have revealed less vaccine protection against infection and attenuation of vaccine effects on transmission. COVID-19 vaccines still likely reduce transmission compared with not being vaccinated at all, even with variants of concern; however, determining the magnitude of transmission reduction is constrained by the challenges of performing these studies, requiring accurate linkage of infections to vaccine status and timing thereof, particularly within households. In this review, we synthesize the currently available data on the impact of COVID-19 vaccines on infection, serious illness, and transmission; we also identify the challenges and opportunities associated with policy development based on this data.

6.
Clin Infect Dis ; 75(1): e1180-e1183, 2022 Aug 24.
Article in English | MEDLINE | ID: covidwho-1816034

ABSTRACT

Coronavirus disease 2019 symptom definitions rarely include symptom severity. We collected daily nasal swab samples and symptom diaries from contacts of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) case patients. Requiring ≥1 moderate or severe symptom reduced sensitivity to predict SARS-CoV-2 shedding from 60.0% (95% confidence interval [CI], 52.9%-66.7%) to 31.5% (95% CI, 25.7%- 38.0%) but increased specificity from 77.5% (95% CI, 75.3%-79.5%) to 93.8% (95% CI, 92.7%-94.8%).


Subject(s)
COVID-19 , COVID-19/diagnosis , COVID-19 Testing , Humans , Longitudinal Studies , SARS-CoV-2
7.
J Infect Dis ; 226(5): 788-796, 2022 09 13.
Article in English | MEDLINE | ID: covidwho-1774394

ABSTRACT

While detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by diagnostic reverse-transcription polymerase chain reaction (RT-PCR) is highly sensitive for viral RNA, the nucleic acid amplification of subgenomic RNAs (sgRNAs) that are the product of viral replication may more accurately identify replication. We characterized the diagnostic RNA and sgRNA detection by RT-PCR from nasal swab samples collected daily by participants in postexposure prophylaxis or treatment studies for SARS-CoV-2. Among 1932 RT-PCR-positive swab samples with sgRNA tests, 40% (767) had detectable sgRNA. Above a diagnostic RNA viral load (VL) threshold of 5.1 log10 copies/mL, 96% of samples had detectable sgRNA with VLs that followed a linear trend. The trajectories of diagnostic RNA and sgRNA VLs differed, with 80% peaking on the same day but duration of sgRNA detection being shorter (8 vs 14 days). With a large sample of daily swab samples we provide comparative sgRNA kinetics and a diagnostic RNA threshold that correlates with replicating virus independent of symptoms or duration of illness.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Humans , Kinetics , RNA, Viral/analysis , RNA, Viral/genetics , SARS-CoV-2/genetics , Viral Load
8.
Clin Infect Dis ; 74(6): 1089-1092, 2022 03 23.
Article in English | MEDLINE | ID: covidwho-1703666

ABSTRACT

Across 20 vaccine breakthrough cases detected at our institution, all 20 (100%) infections were due to variants of concern (VOCs) and had a median Ct of 20.2 (IQR, 17.1-23.3). When compared with 5174 contemporaneous samples sequenced in our laboratory, VOCs were significantly enriched among breakthrough infections (P < .05).


Subject(s)
COVID-19 , SARS-CoV-2 , Base Sequence , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Washington/epidemiology
9.
JAMA Netw Open ; 5(2): e2148325, 2022 02 01.
Article in English | MEDLINE | ID: covidwho-1680211

ABSTRACT

Importance: Racial and ethnic diversity among study participants is associated with improved generalizability of clinical trial results and may address inequities in evidence that informs public health strategies. Novel strategies are needed for equitable access and recruitment of diverse clinical trial populations. Objective: To investigate demographic and geographical location data for participants in 2 remote COVID-19 clinical trials with online recruitment and compare with those of a contemporaneous clinic-based COVID-19 study. Design, Setting, and Participants: This cohort study was conducted using data from 3 completed, prospective randomized clinical trials conducted at the same time: 2 remotely conducted studies (the Early Treatment Study and Hydroxychloroquine COVID-19 Postexposure Prophylaxis [PEP] Study) and 1 clinic-based study of convalescent plasma (the Expanded Access to Convalescent Plasma for the Treatment of Patients With COVID-19 study). Data were collected from March to August 2020 with 1 to 28 days of participant follow-up. All studies had clinical sites in Seattle, Washington; the 2 remote trials also had collaborating sites in New York, New York; Syracuse, New York; Baltimore, Maryland; Boston, Massachusetts; Chicago, Illinois; New Orleans, Louisiana; and Los Angeles, California. Two remote trials with inclusive social media strategies enrolled 929 participants with recent SARS-CoV-2 exposure (Hydroxychloroquine COVID-19 PEP Trial) and 231 participants with COVID-19 infection (Early Treatment Study); the clinic-based Expanded Access to Convalescent Plasma for the Treatment of Patients With COVID-19 study enrolled 250 participants with recent COVID-19 infection. Data were analyzed from April to August 2021. Interventions: Remote trials used inclusive social media strategies and clinician referral for recruitment and telehealth, courier deliveries, and self-collected nasal swabs for remotely conducted study visits. For the clinic-based study, participants were recruited via clinician referral and attended in-person visits. Main Outcomes and Measures: Google Analytics data were used to measure online participant engagement and recruitment. Participant demographics and geographical location data from remote trials were pooled and compared with those of the clinic-based study. Statistical comparison of demographic data was limited to participants with COVID infections (ie, those in the remotely conducted Early Treatment Study vs those in the clinic-based study) to improve accuracy of comparison given that the Hydroxychloroquine COVID-19 PEP Trial enrolled participants with COVID-19 exposures and thus had different enrollment criteria. Results: A total of 1410 participants were included. Among 1160 participants in remote trials and 250 participants in the clinic-based trial, the mean (range) age of participants was 39 (18-80) years vs 50 (19-79) years and 676 individuals (58.3%) vs 131 individuals (52.4%) reported female sex. The Early Treatment Study with inclusive social media strategies enrolled 231 participants in 41 US states with increased rates of racial, ethnic, and geographic diversity compared with participants in the clinic-based study. Among 228 participants in the remotely conducted Early Treatment Study with race data vs participants in the clinic-based study, 39 individuals (17.1%) vs 1 individual (0.4%) identified as Alaska Native or American Indian, 11 individuals (4.8%) vs 22 individuals (8.8%) identified as Asian, 26 individuals (11.4%) vs 4 individuals (1.6%) identified as Black, 3 individuals (1.3%) vs 1 individual identified as Native Hawaiian or Pacific Islander, 117 individuals (51.3%) vs 214 individuals (85.6%) identified as White, and 32 individuals (14.0%) vs 8 individuals (3.2%) identified as other race (P < .001). Among 230 individuals in the Early Treatment Study vs 236 individuals in the clinic-based trial with ethnicity data, 71 individuals (30.9%) vs 11 individuals (4.7%) identified as Hispanic or Latinx (P<.001). There were 29 individuals in the Early Treatment Study with nonurban residences (ie, rural, small town, or peri-urban; 12.6%) vs 6 of 248 individuals in the clinic-based trial with residence data (2.4%) (P < .001). In remote trial online recruitment, the highest engagement was with advertisements on social media platforms; among 125 147 unique users with age demographics who clicked on online recruitment advertisements, 84 188 individuals (67.3%) engaged via Facebook. Conclusions and Relevance: These findings suggest that remote clinical trials with online advertising may be considered as a strategy to improve diversity among clinical trial participants.


Subject(s)
COVID-19/ethnology , Patient Selection , Randomized Controlled Trials as Topic , Adult , Cohort Studies , Female , Humans , Male , Middle Aged , Pandemics , SARS-CoV-2
10.
N Engl J Med ; 386(11): 1046-1057, 2022 03 17.
Article in English | MEDLINE | ID: covidwho-1655751

ABSTRACT

BACKGROUND: Although the three vaccines against coronavirus disease 2019 (Covid-19) that have received emergency use authorization in the United States are highly effective, breakthrough infections are occurring. Data are needed on the serial use of homologous boosters (same as the primary vaccine) and heterologous boosters (different from the primary vaccine) in fully vaccinated recipients. METHODS: In this phase 1-2, open-label clinical trial conducted at 10 sites in the United States, adults who had completed a Covid-19 vaccine regimen at least 12 weeks earlier and had no reported history of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection received a booster injection with one of three vaccines: mRNA-1273 (Moderna) at a dose of 100 µg, Ad26.COV2.S (Johnson & Johnson-Janssen) at a dose of 5×1010 virus particles, or BNT162b2 (Pfizer-BioNTech) at a dose of 30 µg. The primary end points were safety, reactogenicity, and humoral immunogenicity on trial days 15 and 29. RESULTS: Of the 458 participants who were enrolled in the trial, 154 received mRNA-1273, 150 received Ad26.COV2.S, and 153 received BNT162b2 as booster vaccines; 1 participant did not receive the assigned vaccine. Reactogenicity was similar to that reported for the primary series. More than half the recipients reported having injection-site pain, malaise, headache, or myalgia. For all combinations, antibody neutralizing titers against a SARS-CoV-2 D614G pseudovirus increased by a factor of 4 to 73, and binding titers increased by a factor of 5 to 55. Homologous boosters increased neutralizing antibody titers by a factor of 4 to 20, whereas heterologous boosters increased titers by a factor of 6 to 73. Spike-specific T-cell responses increased in all but the homologous Ad26.COV2.S-boosted subgroup. CD8+ T-cell levels were more durable in the Ad26.COV2.S-primed recipients, and heterologous boosting with the Ad26.COV2.S vaccine substantially increased spike-specific CD8+ T cells in the mRNA vaccine recipients. CONCLUSIONS: Homologous and heterologous booster vaccines had an acceptable safety profile and were immunogenic in adults who had completed a primary Covid-19 vaccine regimen at least 12 weeks earlier. (Funded by the National Institute of Allergy and Infectious Diseases; DMID 21-0012 ClinicalTrials.gov number, NCT04889209.).


Subject(s)
2019-nCoV Vaccine mRNA-1273/immunology , Ad26COVS1/immunology , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , BNT162 Vaccine/immunology , COVID-19 Vaccines/immunology , Immunogenicity, Vaccine , Adult , Aged , Aged, 80 and over , COVID-19 Vaccines/adverse effects , Female , Humans , Immunization, Secondary/adverse effects , Injections, Intramuscular/adverse effects , Male , Middle Aged , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes/immunology
11.
JAMA Netw Open ; 5(1): e2142796, 2022 01 04.
Article in English | MEDLINE | ID: covidwho-1615909

ABSTRACT

Importance: The SARS-CoV-2 viral trajectory has not been well characterized in incident infections. These data are needed to inform natural history, prevention practices, and therapeutic development. Objective: To characterize early SARS-CoV-2 viral RNA load (hereafter referred to as viral load) in individuals with incident infections in association with COVID-19 symptom onset and severity. Design, Setting, and Participants: This prospective cohort study was a secondary data analysis of a remotely conducted study that enrolled 829 asymptomatic community-based participants recently exposed (<96 hours) to persons with SARS-CoV-2 from 41 US states from March 31 to August 21, 2020. Two cohorts were studied: (1) participants who were SARS-CoV-2 negative at baseline and tested positive during study follow-up, and (2) participants who had 2 or more positive swabs during follow-up, regardless of the initial (baseline) swab result. Participants collected daily midturbinate swab samples for SARS-CoV-2 RNA detection and maintained symptom diaries for 14 days. Exposure: Laboratory-confirmed SARS-CoV-2 infection. Main Outcomes and Measures: The observed SARS-CoV-2 viral load among incident infections was summarized, and piecewise linear mixed-effects models were used to estimate the characteristics of viral trajectories in association with COVID-19 symptom onset and severity. Results: A total of 97 participants (55 women [57%]; median age, 37 years [IQR, 27-52 years]) developed incident infections during follow-up. Forty-two participants (43%) had viral shedding for 1 day (median peak viral load cycle threshold [Ct] value, 38.5 [95% CI, 38.3-39.0]), 18 (19%) for 2 to 6 days (median Ct value, 36.7 [95% CI, 30.2-38.1]), and 31 (32%) for 7 days or more (median Ct value, 18.3 [95% CI, 17.4-22.0]). The cycle threshold value has an inverse association with viral load. Six participants (6%) had 1 to 6 days of viral shedding with censored duration. The peak mean (SD) viral load was observed on day 3 of shedding (Ct value, 33.8 [95% CI, 31.9-35.6]). Based on the statistical models fitted to 129 participants (60 men [47%]; median age, 38 years [IQR, 25-54 years]) with 2 or more SARS-CoV-2-positive swab samples, persons reporting moderate or severe symptoms tended to have a higher peak mean viral load than those who were asymptomatic (Ct value, 23.3 [95% CI, 22.6-24.0] vs 30.7 [95% CI, 29.8-31.4]). Mild symptoms generally started within 1 day of peak viral load, and moderate or severe symptoms 2 days after peak viral load. All 535 sequenced samples detected the G614 variant (Wuhan strain). Conclusions and Relevance: This cohort study suggests that having incident SARS-CoV-2 G614 infection was associated with a rapid viral load peak followed by slower decay. COVID-19 symptom onset generally coincided with peak viral load, which correlated positively with symptom severity. This longitudinal evaluation of the SARS-CoV-2 G614 with frequent molecular testing serves as a reference for comparing emergent viral lineages to inform clinical trial designs and public health strategies to contain the spread of the virus.


Subject(s)
COVID-19/virology , RNA, Viral , SARS-CoV-2 , Severity of Illness Index , Viral Load , Virus Shedding , Adult , COVID-19/complications , Female , Humans , Incidence , Longitudinal Studies , Male , Middle Aged , Molecular Diagnostic Techniques/methods , Polymerase Chain Reaction/methods , Prospective Studies , Serologic Tests
12.
JAMA ; 326(1): 46-55, 2021 07 06.
Article in English | MEDLINE | ID: covidwho-1251867

ABSTRACT

Importance: Preventive interventions are needed to protect residents and staff of skilled nursing and assisted living facilities from COVID-19 during outbreaks in their facilities. Bamlanivimab, a neutralizing monoclonal antibody against SARS-CoV-2, may confer rapid protection from SARS-CoV-2 infection and COVID-19. Objective: To determine the effect of bamlanivimab on the incidence of COVID-19 among residents and staff of skilled nursing and assisted living facilities. Design, Setting, and Participants: Randomized, double-blind, single-dose, phase 3 trial that enrolled residents and staff of 74 skilled nursing and assisted living facilities in the United States with at least 1 confirmed SARS-CoV-2 index case. A total of 1175 participants enrolled in the study from August 2 to November 20, 2020. Database lock was triggered on January 13, 2021, when all participants reached study day 57. Interventions: Participants were randomized to receive a single intravenous infusion of bamlanivimab, 4200 mg (n = 588), or placebo (n = 587). Main Outcomes and Measures: The primary outcome was incidence of COVID-19, defined as the detection of SARS-CoV-2 by reverse transcriptase-polymerase chain reaction and mild or worse disease severity within 21 days of detection, within 8 weeks of randomization. Key secondary outcomes included incidence of moderate or worse COVID-19 severity and incidence of SARS-CoV-2 infection. Results: The prevention population comprised a total of 966 participants (666 staff and 300 residents) who were negative at baseline for SARS-CoV-2 infection and serology (mean age, 53.0 [range, 18-104] years; 722 [74.7%] women). Bamlanivimab significantly reduced the incidence of COVID-19 in the prevention population compared with placebo (8.5% vs 15.2%; odds ratio, 0.43 [95% CI, 0.28-0.68]; P < .001; absolute risk difference, -6.6 [95% CI, -10.7 to -2.6] percentage points). Five deaths attributed to COVID-19 were reported by day 57; all occurred in the placebo group. Among 1175 participants who received study product (safety population), the rate of participants with adverse events was 20.1% in the bamlanivimab group and 18.9% in the placebo group. The most common adverse events were urinary tract infection (reported by 12 participants [2%] who received bamlanivimab and 14 [2.4%] who received placebo) and hypertension (reported by 7 participants [1.2%] who received bamlanivimab and 10 [1.7%] who received placebo). Conclusions and Relevance: Among residents and staff in skilled nursing and assisted living facilities, treatment during August-November 2020 with bamlanivimab monotherapy reduced the incidence of COVID-19 infection. Further research is needed to assess preventive efficacy with current patterns of viral strains with combination monoclonal antibody therapy. Trial Registration: ClinicalTrials.gov Identifier: NCT04497987.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Neutralizing/therapeutic use , Antiviral Agents/therapeutic use , COVID-19/prevention & control , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/immunology , Antiviral Agents/adverse effects , Antiviral Agents/immunology , Assisted Living Facilities , COVID-19/epidemiology , Double-Blind Method , Drug Approval , Female , Health Personnel , Humans , Immunization, Passive , Incidence , Infusions, Intravenous , Male , Middle Aged , SARS-CoV-2/isolation & purification , Severity of Illness Index , Skilled Nursing Facilities , Young Adult
13.
Ann Intern Med ; 174(3): 344-352, 2021 03.
Article in English | MEDLINE | ID: covidwho-1190610

ABSTRACT

BACKGROUND: Effective prevention against coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is currently limited to nonpharmaceutical strategies. Laboratory and observational data suggested that hydroxychloroquine had biological activity against SARS-CoV-2, potentially permitting its use for prevention. OBJECTIVE: To test hydroxychloroquine as postexposure prophylaxis for SARS-CoV-2 infection. DESIGN: Household-randomized, double-blind, controlled trial of hydroxychloroquine postexposure prophylaxis. (ClinicalTrials.gov: NCT04328961). SETTING: National U.S. multicenter study. PARTICIPANTS: Close contacts recently exposed (<96 hours) to persons with diagnosed SARS-CoV-2 infection. INTERVENTION: Hydroxychloroquine (400 mg/d for 3 days followed by 200 mg/d for 11 days) or ascorbic acid (500 mg/d followed by 250 mg/d) as a placebo-equivalent control. MEASUREMENTS: Participants self-collected mid-turbinate swabs daily (days 1 to 14) for SARS-CoV-2 polymerase chain reaction (PCR) testing. The primary outcome was PCR-confirmed incident SARS-CoV-2 infection among persons who were SARS-CoV-2 negative at enrollment. RESULTS: Between March and August 2020, 671 households were randomly assigned: 337 (407 participants) to the hydroxychloroquine group and 334 (422 participants) to the control group. Retention at day 14 was 91%, and 10 724 of 11 606 (92%) expected swabs were tested. Among the 689 (89%) participants who were SARS-CoV-2 negative at baseline, there was no difference between the hydroxychloroquine and control groups in SARS-CoV-2 acquisition by day 14 (53 versus 45 events; adjusted hazard ratio, 1.10 [95% CI, 0.73 to 1.66]; P > 0.20). The frequency of participants experiencing adverse events was higher in the hydroxychloroquine group than the control group (66 [16.2%] versus 46 [10.9%], respectively; P = 0.026). LIMITATION: The delay between exposure, and then baseline testing and the first dose of hydroxychloroquine or ascorbic acid, was a median of 2 days. CONCLUSION: This rigorous randomized controlled trial among persons with recent exposure excluded a clinically meaningful effect of hydroxychloroquine as postexposure prophylaxis to prevent SARS-CoV-2 infection. PRIMARY FUNDING SOURCE: Bill & Melinda Gates Foundation.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , COVID-19/prevention & control , Hydroxychloroquine/therapeutic use , Post-Exposure Prophylaxis , Adolescent , Adult , Aged , Aged, 80 and over , Antiviral Agents/adverse effects , COVID-19/diagnosis , COVID-19 Nucleic Acid Testing , Double-Blind Method , Female , Humans , Hydroxychloroquine/adverse effects , Male , Middle Aged , SARS-CoV-2 , Time Factors , Treatment Outcome , United States , Young Adult
14.
EClinicalMedicine ; 33: 100773, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1103840

ABSTRACT

BACKGROUND: Treatment options for outpatients with COVID-19 could reduce morbidity and prevent SARS-CoV-2 transmission. METHODS: In this randomized, double-blind, three-arm (1:1:1) placebo-equivalent controlled trial conducted remotely throughout the United States, adult outpatients with laboratory-confirmed SARS-CoV-2 infection were recruited. Participants were randomly assigned to receive hydroxychloroquine (HCQ) (400 mg BID x1day, followed by 200 mg BID x9days) with or without azithromycin (AZ) (500 mg, then 250 mg daily x4days) or placebo-equivalent (ascorbic acid (HCQ) and folic acid (AZ)), stratified by risk for progression to severe COVID-19 (high-risk vs. low-risk). Self-collected nasal swabs for SARS-CoV-2 PCR, FLUPro symptom surveys, EKGs and vital signs were collected daily. Primary endpoints were: (a) 14-day progression to lower respiratory tract infection (LRTI), 28-day COVID-19 related hospitalization, or death; (b) 14-day time to viral clearance; secondary endpoints included time to symptom resolution (ClinicalTrials.gov: NCT04354428). Due to the low rate of clinical outcomes, the study was terminated for operational futility. FINDINGS: Between 15th April and 27th July 2020, 231 participants were enrolled and 219 initiated medication a median of 5.9 days after symptom onset. Among 129 high-risk participants, incident LRTI occurred in six (4.7%) participants (two control, four HCQ/AZ) and COVID-19 related hospitalization in seven (5.4%) (four control, one HCQ, two HCQ/AZ); no LRTI and two (2%) hospitalizations occurred in the 102 low-risk participants (one HCQ, one HCQ/AZ). There were no deaths. Among 152 participants with viral shedding at enrollment, median time to clearance was 5 days (95% CI=4-6) in HCQ, 6 days (95% CI=4-8) in HCQ/AZ, and 8 days (95% CI=6-10) in control. Viral clearance was faster in HCQ (HR=1.62, 95% CI=1.01-2.60, p = 0.047) but not HCQ/AZ (HR=1.25, p = 0.39) compared to control. Among 197 participants who met the COVID-19 definition at enrollment, time to symptom resolution did not differ by group (HCQ: HR=1.02, 95% CI-0.63-1.64, p = 0.95, HCQ/AZ: HR=0.91, 95% CI=0.57-1.45, p = 0.70). INTERPRETATION: Neither HCQ nor HCQ/AZ shortened the clinical course of outpatients with COVID-19, and HCQ, but not HCQ/AZ, had only a modest effect on SARS-CoV-2 viral shedding. HCQ and HCQ/AZ are not effective therapies for outpatient treatment of SARV-CoV-2 infection. FUNDING: The COVID-19 Early Treatment Study was funded by the Bill & Melinda Gates Foundation (INV-017062) through the COVID-19 Therapeutics Accelerator. University of Washington Institute of Translational Health Science (ITHS) grant support (UL1 TR002319), KL2 TR002317, and TL1 TR002318 from NCATS/NIH funded REDCap. The content is solely the responsibility of the authors and does not necessarily represent the views, decisions, or policies of the institutions with which they are affiliated. PAN and MJA were supported by the Mayo Clinic Windland Smith Rice Comprehensive Sudden Cardiac Death Program.Trial registration ClinicalTrials.gov number NCT04354428.

15.
Sci Adv ; 7(6)2020 02.
Article in English | MEDLINE | ID: covidwho-1066795

ABSTRACT

Vaccines, when available, will likely become our best tool to control the COVID-19 pandemic. Even in the most optimistic scenarios, vaccine shortages will likely occur. Using an age-stratified mathematical model paired with optimization algorithms, we determined optimal vaccine allocation for four different metrics (deaths, symptomatic infections, and maximum non-ICU and ICU hospitalizations) under many scenarios. We find that a vaccine with effectiveness ≥50% would be enough to substantially mitigate the ongoing pandemic, provided that a high percentage of the population is optimally vaccinated. When minimizing deaths, we find that for low vaccine effectiveness, irrespective of vaccination coverage, it is optimal to allocate vaccine to high-risk (older) age groups first. In contrast, for higher vaccine effectiveness, there is a switch to allocate vaccine to high-transmission (younger) age groups first for high vaccination coverage. While there are other societal and ethical considerations, this work can provide an evidence-based rationale for vaccine prioritization.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Pandemics/prevention & control , Vaccination/methods , Age Factors , Algorithms , COVID-19/epidemiology , COVID-19/pathology , COVID-19/virology , Epidemics , Hospitalization/statistics & numerical data , Humans , Models, Biological , Risk , SARS-CoV-2/isolation & purification
17.
Ann Intern Med ; 174(2): 221-228, 2021 02.
Article in English | MEDLINE | ID: covidwho-890662

ABSTRACT

Several vaccine candidates to protect against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection or coronavirus disease 2019 (COVID-19) have entered or will soon enter large-scale, phase 3, placebo-controlled randomized clinical trials. To facilitate harmonized evaluation and comparison of the efficacy of these vaccines, a general set of clinical endpoints is proposed, along with considerations to guide the selection of the primary endpoints on the basis of clinical and statistical reasoning. The plausibility that vaccine protection against symptomatic COVID-19 could be accompanied by a shift toward more SARS-CoV-2 infections that are asymptomatic is highlighted, as well as the potential implications of such a shift.


Subject(s)
COVID-19 Vaccines/therapeutic use , COVID-19/prevention & control , Randomized Controlled Trials as Topic/methods , Asymptomatic Infections , COVID-19/diagnosis , COVID-19 Testing , COVID-19 Vaccines/adverse effects , Clinical Trials, Phase III as Topic/methods , Humans , SARS-CoV-2 , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL